maps_ip.cc
Go to the documentation of this file.
1 /****************************************
2 * Computer Algebra System SINGULAR *
3 ****************************************/
4 /*
5 * ABSTRACT - the mapping of polynomials to other rings
6 */
7 #define TRANSEXT_PRIVATES
8 
9 #include "kernel/mod2.h"
10 #include "omalloc/omalloc.h"
11 
12 #include "coeffs/numbers.h"
13 #include "coeffs/coeffs.h"
14 
15 #include "polys/monomials/ring.h"
16 #include "polys/monomials/maps.h"
17 #include "polys/matpol.h"
18 #include "polys/prCopy.h"
20 
21 //#include "polys/ext_fields/longtrans.h"
22 // #include "kernel/longalg.h"
23 
24 #include "misc/options.h"
25 #include "kernel/GBEngine/kstd1.h"
26 #include "kernel/maps/gen_maps.h"
27 
28 #include "maps_ip.h"
29 #include "ipid.h"
30 
31 
32 #include "lists.h"
33 #include "tok.h"
34 
35 /* debug output: Tok2Cmdname in maApplyFetch*/
36 #include "ipshell.h"
37 
38 /*2
39 * maps the expression w to res,
40 * switch what: MAP_CMD: use theMap for mapping, N for preimage ring
41 * //FETCH_CMD: use pOrdPoly for mapping
42 * IMAP_CMD: use perm for mapping, N for preimage ring
43 * default: map only poly-structures,
44 * use perm and par_perm, N and P,
45 */
46 BOOLEAN maApplyFetch(int what,map theMap,leftv res, leftv w, ring preimage_r,
47  int *perm, int *par_perm, int P, nMapFunc nMap)
48 {
49  BOOLEAN use_mult=FALSE;
50 #ifdef HAVE_PLURAL
51  if ((what==IMAP_CMD)
53  && rIsPluralRing(preimage_r))
54  {
55  assume(perm!=NULL);
56  int i=1;
57  while((i<currRing->N)&&(perm[i]==0)) i++;
58  if (i<currRing->N)
59  {
60  int prev_nonnull=i;
61  i++;
62  for(;i<=currRing->N;i++)
63  {
64  if (perm[prev_nonnull] > perm[i])
65  {
66  if (TEST_V_ALLWARN)
67  {
68  Warn("imap not usable for permuting variables, use map (%s <-> %s)",currRing->names[prev_nonnull-1],currRing->names[i-1]);
69  }
70  use_mult=TRUE;
71  break;
72  }
73  else
74  prev_nonnull=i;
75  }
76  }
77  }
78 #endif
79  int i;
80  int N = preimage_r->N;
81 #if 0
82  Print("N=%d what=%s ",N,Tok2Cmdname(what));
83  if (perm!=NULL) for(i=1;i<=N;i++) Print("%d -> %d ",i,perm[i]);
84  PrintS("\n");
85  Print("P=%d ",P);
86  if (par_perm!=NULL) for(i=0;i<P;i++) Print("%d -> %d ",i,par_perm[i]);
87  PrintS("\n");
88 #endif
89 
90  void *data=w->Data();
91  res->rtyp = w->rtyp;
92  switch (w->rtyp)
93  {
94  case NUMBER_CMD:
95  if (P!=0)
96  {
97 // poly n_PermNumber(const number z, const int *par_perm, const int OldPar, const ring src, const ring dst);
98  res->data= (void *) n_PermNumber((number)data, par_perm, P, preimage_r, currRing);
99  res->rtyp=POLY_CMD;
100  if (nCoeff_is_algExt(currRing->cf))
101  res->data=(void *)p_MinPolyNormalize((poly)res->data, currRing);
102  pTest((poly) res->data);
103  }
104  else
105  {
106  assume( nMap != NULL );
107  number a = nMap((number)data, preimage_r->cf, currRing->cf);
108  if (nCoeff_is_Extension(currRing->cf))
109  {
110  n_Normalize(a, currRing->cf);
111 /*
112  number a = (number)res->data;
113  number one = nInit(1);
114  number product = nMult(a, one );
115  nDelete(&one);
116  nDelete(&a);
117  res->data=(void *)product;
118  */
119  }
120  #ifdef LDEBUG
121  n_Test(a, currRing->cf);
122  #endif
123  res->data=(void *)a;
124 
125  }
126  break;
127  case POLY_CMD:
128  case VECTOR_CMD:
129  if ((what==FETCH_CMD)&& (preimage_r->cf==currRing->cf))
130  res->data=(void *)prCopyR( (poly)data, preimage_r, currRing);
131  else
132  if ( (what==IMAP_CMD) || /*(*/ (what==FETCH_CMD) /*)*/) /* && (nMap!=nCopy)*/
133  res->data=(void *)p_PermPoly((poly)data,perm,preimage_r,currRing, nMap,par_perm,P,use_mult);
134  else /*if (what==MAP_CMD)*/
135  {
136  p_Test((poly)data,preimage_r);
137  matrix s=mpNew(N,maMaxDeg_P((poly)data, preimage_r));
138  res->data=(void *)maEval(theMap, (poly)data, preimage_r, nMap, (ideal)s, currRing);
139  idDelete((ideal *)&s);
140  }
141  if (nCoeff_is_Extension(currRing->cf))
142  res->data=(void *)p_MinPolyNormalize((poly)res->data, currRing);
143  pTest((poly)res->data);
144  break;
145  case MODUL_CMD:
146  case MATRIX_CMD:
147  case IDEAL_CMD:
148  case MAP_CMD:
149  {
150  int C=((matrix)data)->cols();
151  int R;
152  if (w->rtyp==MAP_CMD) R=1;
153  else R=((matrix)data)->rows();
154  matrix m=mpNew(R,C);
155  char *tmpR=NULL;
156  if(w->rtyp==MAP_CMD)
157  {
158  tmpR=((map)data)->preimage;
159  ((matrix)data)->rank=((matrix)data)->rows();
160  }
161  if ((what==FETCH_CMD)&& (preimage_r->cf == currRing->cf))
162  {
163  for (i=R*C-1;i>=0;i--)
164  {
165  m->m[i]=prCopyR(((ideal)data)->m[i], preimage_r, currRing);
166  pTest(m->m[i]);
167  }
168  }
169  else if ((what==IMAP_CMD) || (what==FETCH_CMD))
170  {
171  for (i=R*C-1;i>=0;i--)
172  {
173  m->m[i]=p_PermPoly(((ideal)data)->m[i],perm,preimage_r,currRing,
174  nMap,par_perm,P,use_mult);
175  pTest(m->m[i]);
176  }
177  }
178  else /* (what==MAP_CMD) */
179  {
180  assume(what==MAP_CMD);
181  matrix s=mpNew(N,maMaxDeg_Ma((ideal)data,preimage_r));
182  for (i=R*C-1;i>=0;i--)
183  {
184  m->m[i]=maEval(theMap, ((ideal)data)->m[i], preimage_r, nMap, (ideal)s, currRing);
185  pTest(m->m[i]);
186  }
187  idDelete((ideal *)&s);
188  }
189  if (nCoeff_is_algExt(currRing->cf))
190  {
191  for (i=R*C-1;i>=0;i--)
192  {
193  m->m[i]=p_MinPolyNormalize(m->m[i], currRing);
194  pTest(m->m[i]);
195  }
196  }
197  if(w->rtyp==MAP_CMD)
198  {
199  ((map)data)->preimage=tmpR;
200  ((map)m)->preimage=omStrDup(tmpR);
201  }
202  else
203  {
204  m->rank=((matrix)data)->rank;
205  }
206  res->data=(char *)m;
207  idTest((ideal) m);
208  break;
209  }
210 
211  case LIST_CMD:
212  {
213  lists l=(lists)data;
215  ml->Init(l->nr+1);
216  for(i=0;i<=l->nr;i++)
217  {
218  if (((l->m[i].rtyp>BEGIN_RING)&&(l->m[i].rtyp<END_RING))
219  ||(l->m[i].rtyp==LIST_CMD))
220  {
221  if (maApplyFetch(what,theMap,&ml->m[i],&l->m[i],
222  preimage_r,perm,par_perm,P,nMap))
223  {
224  ml->Clean();
226  res->rtyp=0;
227  return TRUE;
228  }
229  }
230  else
231  {
232  ml->m[i].Copy(&l->m[i]);
233  }
234  }
235  res->data=(char *)ml;
236  break;
237  }
238  default:
239  {
240  return TRUE;
241  }
242  }
243  return FALSE;
244 }
245 
246 /*2
247 * substitutes the parameter par (from 1..N) by image,
248 * does not destroy p and image
249 */
250 poly pSubstPar(poly p, int par, poly image)
251 {
252  const ring R = currRing->cf->extRing;
253  ideal theMapI = idInit(rPar(currRing),1);
254  nMapFunc nMap = n_SetMap(R->cf, currRing->cf);
255  int i;
256  for(i = rPar(currRing);i>0;i--)
257  {
258  if (i != par)
259  theMapI->m[i-1]= p_NSet(n_Param(i, currRing), currRing);
260  else
261  theMapI->m[i-1] = p_Copy(image, currRing);
262  p_Test(theMapI->m[i-1],currRing);
263  }
264  //iiWriteMatrix((matrix)theMapI,"map:",1,currRing,0);
265 
266  map theMap=(map)theMapI;
267  theMap->preimage=NULL;
268 
270  sleftv tmpW;
271  poly res=NULL;
272 
274  if (currRing->cf->rep==n_rep_rat_fct )
275  {
276  while (p!=NULL)
277  {
278  memset(v,0,sizeof(sleftv));
279 
280  number d = n_GetDenom(pGetCoeff(p), currRing->cf);
281  p_Test((poly)NUM((fraction)d), R);
282 
283  if ( n_IsOne (d, currRing->cf) )
284  {
285  n_Delete(&d, currRing->cf); d = NULL;
286  }
287  else if (!p_IsConstant((poly)NUM((fraction)d), R))
288  {
289  WarnS("ignoring denominators of coefficients...");
290  n_Delete(&d, currRing->cf); d = NULL;
291  }
292 
293  number num = n_GetNumerator(pGetCoeff(p), currRing->cf);
294  memset(&tmpW,0,sizeof(sleftv));
295  tmpW.rtyp = POLY_CMD;
296  p_Test((poly)NUM((fraction)num), R);
297 
298  tmpW.data = NUM ((fraction)num); // a copy of this poly will be used
299 
300  p_Normalize(NUM((fraction)num),R);
301  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,R,NULL,NULL,0,nMap))
302  {
303  WerrorS("map failed");
304  v->data=NULL;
305  }
306  n_Delete(&num, currRing->cf);
307  //TODO check for memory leaks
308  poly pp = pHead(p);
309  //PrintS("map:");pWrite(pp);
310  if( d != NULL )
311  {
312  pSetCoeff(pp, n_Invers(d, currRing->cf));
313  n_Delete(&d, currRing->cf); // d = NULL;
314  }
315  else
316  pSetCoeff(pp, nInit(1));
317 
318  //PrintS("->");pWrite((poly)(v->data));
319  poly ppp = pMult((poly)(v->data),pp);
320  //PrintS("->");pWrite(ppp);
321  res=pAdd(res,ppp);
322  pIter(p);
323  }
324  }
325  else if (currRing->cf->rep==n_rep_poly )
326  {
327  while (p!=NULL)
328  {
329  memset(v,0,sizeof(sleftv));
330 
331  number num = n_GetNumerator(pGetCoeff(p), currRing->cf);
332  memset(&tmpW,0,sizeof(sleftv));
333  tmpW.rtyp = POLY_CMD;
334  p_Test((poly)num, R);
335 
336 
337  p_Normalize((poly)num,R);
338  if (num==NULL) num=(number)R->qideal->m[0];
339  tmpW.data = num; // a copy of this poly will be used
340  if (maApplyFetch(MAP_CMD,theMap,v,&tmpW,R,NULL,NULL,0,nMap))
341  {
342  WerrorS("map failed");
343  v->data=NULL;
344  }
345  if (num!=(number)R->qideal->m[0]) n_Delete(&num, currRing->cf);
346  //TODO check for memory leaks
347  poly pp = pHead(p);
348  //PrintS("map:");pWrite(pp);
349  pSetCoeff(pp,n_Init(1,currRing->cf));
350  //PrintS("cf->");pWrite((poly)(v->data));
351  poly ppp = pMult((poly)(v->data),pp);
352  //PrintS("->");pWrite(ppp);
353  res=pAdd(res,ppp);
354  pIter(p);
355  }
356  }
357  else
358  {
359  WerrorS("cannot apply subst for these coeffcients");
360  }
361  idDelete((ideal *)(&theMap));
363  return res;
364 }
365 
366 /*2
367 * substitute the n-th parameter by the poly e in id
368 * does not destroy id and e
369 */
370 ideal idSubstPar(ideal id, int n, poly e)
371 {
372  int k=MATROWS((matrix)id)*MATCOLS((matrix)id);
373  ideal res=(ideal)mpNew(MATROWS((matrix)id),MATCOLS((matrix)id));
374 
375  res->rank = id->rank;
376  for(k--;k>=0;k--)
377  {
378  res->m[k]=pSubstPar(id->m[k],n,e);
379  }
380  return res;
381 }
382 
383 /*2
384 * substitutes the variable var (from 1..N) by image,
385 * does not destroy p and image
386 */
387 poly pSubstPoly(poly p, int var, poly image)
388 {
389  if (p==NULL) return NULL;
390 #ifdef HAVE_PLURAL
391  if (rIsPluralRing(currRing))
392  {
393  return pSubst(pCopy(p),var,image);
394  }
395 #endif
396  return p_SubstPoly(p,var,image,currRing,currRing,ndCopyMap);
397 }
398 
399 /*2
400 * substitute the n-th variable by the poly e in id
401 * does not destroy id and e
402 */
403 ideal idSubstPoly(ideal id, int n, poly e)
404 {
405 
406 #ifdef HAVE_PLURAL
407  if (rIsPluralRing(currRing))
408  {
409  int k=MATROWS((matrix)id)*MATCOLS((matrix)id);
410  ideal res=(ideal)mpNew(MATROWS((matrix)id),MATCOLS((matrix)id));
411  res->rank = id->rank;
412  for(k--;k>=0;k--)
413  {
414  res->m[k]=pSubst(pCopy(id->m[k]),n,e);
415  }
416  return res;
417  }
418 #endif
419  return id_SubstPoly(id,n,e,currRing,currRing,ndCopyMap);
420 }
#define pSubst(p, n, e)
Definition: polys.h:352
#define omAllocBin(bin)
Definition: omAllocDecl.h:205
CanonicalForm map(const CanonicalForm &primElem, const Variable &alpha, const CanonicalForm &F, const Variable &beta)
map from to such that is mapped onto
Definition: cf_map_ext.cc:400
static FORCE_INLINE number n_GetNumerator(number &n, const coeffs r)
return the numerator of n (if elements of r are by nature not fractional, result is n) ...
Definition: coeffs.h:609
const CanonicalForm int s
Definition: facAbsFact.cc:55
sleftv * m
Definition: lists.h:45
Class used for (list of) interpreter objects.
Definition: subexpr.h:82
#define Print
Definition: emacs.cc:80
#define pAdd(p, q)
Definition: polys.h:190
ideal idSubstPar(ideal id, int n, poly e)
Definition: maps_ip.cc:370
poly prCopyR(poly p, ring src_r, ring dest_r)
Definition: prCopy.cc:35
#define idDelete(H)
delete an ideal
Definition: ideals.h:29
Definition: lists.h:22
CanonicalForm num(const CanonicalForm &f)
#define FALSE
Definition: auxiliary.h:94
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:469
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:590
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition: p_polys.cc:1435
number ndCopyMap(number a, const coeffs aRing, const coeffs r)
Definition: numbers.cc:251
poly p_SubstPoly(poly p, int var, poly image, const ring preimage_r, const ring image_r, const nMapFunc nMap, matrix cache=NULL)
Definition: subst_maps.cc:39
#define pTest(p)
Definition: polys.h:401
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:539
ideal idSubstPoly(ideal id, int n, poly e)
Definition: maps_ip.cc:403
int maMaxDeg_Ma(ideal a, ring preimage_r)
Definition: maps.cc:254
#define TRUE
Definition: auxiliary.h:98
BOOLEAN maApplyFetch(int what, map theMap, leftv res, leftv w, ring preimage_r, int *perm, int *par_perm, int P, nMapFunc nMap)
Definition: maps_ip.cc:46
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:579
void * ADDRESS
Definition: auxiliary.h:133
sleftv * leftv
Definition: structs.h:60
void WerrorS(const char *s)
Definition: feFopen.cc:24
int k
Definition: cfEzgcd.cc:92
(fraction), see transext.h
Definition: coeffs.h:115
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define WarnS
Definition: emacs.cc:78
poly pSubstPoly(poly p, int var, poly image)
Definition: maps_ip.cc:387
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:812
(poly), see algext.h
Definition: coeffs.h:114
void * data
Definition: subexpr.h:88
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1..n_NumberOfParameters(...)
Definition: coeffs.h:814
#define pIter(p)
Definition: monomials.h:44
poly * m
Definition: matpol.h:18
if(yy_init)
Definition: libparse.cc:1418
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:4014
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:924
CanonicalForm res
Definition: facAbsFact.cc:64
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:48
#define assume(x)
Definition: mod2.h:390
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1923
poly pSubstPar(poly p, int par, poly image)
Definition: maps_ip.cc:250
CanonicalForm pp(const CanonicalForm &)
CanonicalForm pp ( const CanonicalForm & f )
Definition: cf_gcd.cc:253
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:74
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:739
void Copy(leftv e)
Definition: subexpr.cc:684
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of &#39;a&#39;; raise an error if &#39;a&#39; is not invertible ...
Definition: coeffs.h:565
int m
Definition: cfEzgcd.cc:121
omBin sleftv_bin
Definition: subexpr.cc:46
int i
Definition: cfEzgcd.cc:125
void PrintS(const char *s)
Definition: reporter.cc:284
#define pHead(p)
returns newly allocated copy of Lm(p), coef is copied, next=NULL, p might be NULL ...
Definition: polys.h:67
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:722
#define p_Test(p, r)
Definition: p_polys.h:163
INLINE_THIS void Init(int l=0)
matrix mpNew(int r, int c)
create a r x c zero-matrix
Definition: matpol.cc:36
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3709
ideal idInit(int idsize, int rank)
initialise an ideal / module
Definition: simpleideals.cc:37
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
poly p_MinPolyNormalize(poly p, const ring r)
Definition: maps.cc:324
int nr
Definition: lists.h:43
#define MATCOLS(i)
Definition: matpol.h:27
#define NULL
Definition: omList.c:10
slists * lists
Definition: mpr_numeric.h:146
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:3910
const char * Tok2Cmdname(int tok)
Definition: gentable.cc:138
#define pMult(p, q)
Definition: polys.h:194
#define R
Definition: sirandom.c:26
const CanonicalForm & w
Definition: facAbsFact.cc:55
int rtyp
Definition: subexpr.h:91
static FORCE_INLINE number n_GetDenom(number &n, const coeffs r)
return the denominator of n (if elements of r are by nature not fractional, result is 1) ...
Definition: coeffs.h:604
int maMaxDeg_P(poly p, ring preimage_r)
Definition: maps.cc:292
void Clean(ring r=currRing)
Definition: lists.h:25
ring currRing
Widely used global variable which specifies the current polynomial ring for Singular interpreter and ...
Definition: polys.cc:13
void * Data()
Definition: subexpr.cc:1134
Definition: tok.h:118
omBin slists_bin
Definition: lists.cc:23
ideal id_SubstPoly(ideal id, int var, poly image, const ring preimage_r, const ring image_r, const nMapFunc nMap)
Definition: subst_maps.cc:68
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:860
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:456
#define MATROWS(i)
Definition: matpol.h:26
int p
Definition: cfModGcd.cc:4019
#define omFreeBin(addr, bin)
Definition: omAllocDecl.h:259
#define nInit(i)
Definition: numbers.h:25
int BOOLEAN
Definition: auxiliary.h:85
#define pSetCoeff(p, n)
deletes old coeff before setting the new one
Definition: polys.h:31
#define TEST_V_ALLWARN
Definition: options.h:140
ip_smatrix * matrix
Definition: matpol.h:31
int l
Definition: cfEzgcd.cc:93
poly maEval(map theMap, poly p, ring preimage_r, nMapFunc nMap, ideal s, const ring dst_r)
Definition: maps.cc:117
long rank
Definition: matpol.h:19
#define pCopy(p)
return a copy of the poly
Definition: polys.h:172
#define idTest(id)
Definition: ideals.h:47
#define Warn
Definition: emacs.cc:77
#define omStrDup(s)
Definition: omAllocDecl.h:263