Rheolef  7.2
an efficient C++ finite element environment
helmholtz_s_error.cc

The Helmholtz problem on a surface – error analysis.

The Helmholtz problem on a surface – error analysis

#include "rheolef.h"
using namespace std;
using namespace rheolef;
#include "sphere.icc"
int main (int argc, char**argv) {
environment rheolef(argc, argv);
Float tol = (argc > 1) ? atof(argv[1]) : 1e+38;
field uh; din >> uh;
const space& Wh = uh.get_space();
trial u (Wh); test v (Wh);
form m = integrate (u*v);
size_t d = Wh.get_geo().dimension();
field pi_h_u = lazy_interpolate(Wh, u_exact(d));
field eh = uh - pi_h_u;
dout << "err_l2 " << sqrt(m(eh,eh)) << endl
<< "err_h1 " << sqrt(a(eh,eh)) << endl
<< "err_linf " << eh.max_abs() << endl;
return (eh.max_abs() < tol) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the form page for the full documentation
see the environment page for the full documentation
Definition: environment.h:121
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
point u(const point &x)
int main(int argc, char **argv)
rheolef::details::is_vec dot
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_s(const Expr &expr)
grad_s(uh): see the expression page for the full documentation
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
Definition: field.h:871
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
Definition: integrate.h:211
STL namespace.
rheolef - reference manual
The level set function for the sphere geometry.
Definition: leveque.h:25
g u_exact
Definition: taylor_exact.h:26