The Helmholtz problem on a surface – error analysis.
int main (
int argc,
char**argv) {
Float tol = (argc > 1) ? atof(argv[1]) : 1e+38;
const space& Wh = uh.get_space();
size_t d = Wh.get_geo().dimension();
dout <<
"err_l2 " << sqrt(
m(eh,eh)) << endl
<<
"err_h1 " << sqrt(
a(eh,eh)) << endl
<< "err_linf " << eh.max_abs() << endl;
return (eh.max_abs() < tol) ? 0 : 1;
}
see the Float page for the full documentation
see the field page for the full documentation
see the environment page for the full documentation
see the space page for the full documentation
see the test page for the full documentation
see the test page for the full documentation
int main(int argc, char **argv)
rheolef::details::is_vec dot
This file is part of Rheolef.
std::enable_if< details::has_field_rdof_interface< Expr >::value, details::field_expr_v2_nonlinear_terminal_field< typenameExpr::scalar_type, typenameExpr::memory_type, details::differentiate_option::gradient > >::type grad_s(const Expr &expr)
grad_s(uh): see the expression page for the full documentation
field_basic< T, M > lazy_interpolate(const space_basic< T, M > &X2h, const field_basic< T, M > &u1h)
see the interpolate page for the full documentation
std::enable_if< details::is_field_expr_v2_nonlinear_arg< Expr >::value &&!is_undeterminated< Result >::value, Result >::type integrate(const geo_basic< T, M > &omega, const Expr &expr, const integrate_option &iopt, Result dummy=Result())
see the integrate page for the full documentation
rheolef - reference manual
The level set function for the sphere geometry.