next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.000094095 seconds elapsed
 -- 0.00115818 seconds elapsed
 -- 0.000285131 seconds elapsed
 -- 0.000089998 seconds elapsed
 -- 0.000990796 seconds elapsed
 -- 0.000234517 seconds elapsed
 -- 0.000084087 seconds elapsed
 -- 0.00008067 seconds elapsed
 -- 0.000195925 seconds elapsed
 -- 0.000094687 seconds elapsed
 -- 0.000935923 seconds elapsed
 -- 0.000231983 seconds elapsed
 -- 0.000087894 seconds elapsed
 -- 0.000881744 seconds elapsed
 -- 0.000217846 seconds elapsed
 -- 0.000090819 seconds elapsed
 -- 0.000833533 seconds elapsed
 -- 0.000235489 seconds elapsed
 -- 0.000089387 seconds elapsed
 -- 0.000904677 seconds elapsed
 -- 0.000223747 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.000088275 seconds elapsed
 -- 0.00102258 seconds elapsed
 -- 0.000224187 seconds elapsed
 -- 0.000086902 seconds elapsed
 -- 0.000925806 seconds elapsed
 -- 0.000222064 seconds elapsed
 -- 0.0001391 seconds elapsed
 -- 0.000943638 seconds elapsed
 -- 0.000246399 seconds elapsed
 -- 0.000090609 seconds elapsed
 -- 0.000866736 seconds elapsed
 -- 0.000220942 seconds elapsed
 -- 0.000084949 seconds elapsed
 -- 0.00078928 seconds elapsed
 -- 0.000210843 seconds elapsed
 -- 0.000089597 seconds elapsed
 -- 0.000874239 seconds elapsed
 -- 0.000212476 seconds elapsed
 -- 0.000087433 seconds elapsed
 -- 0.00102029 seconds elapsed
 -- 0.000210734 seconds elapsed
 -- 0.000082614 seconds elapsed
 -- 0.000916008 seconds elapsed
 -- 0.000227234 seconds elapsed
 -- 0.000111187 seconds elapsed
 -- 0.000834224 seconds elapsed
 -- 0.000228506 seconds elapsed
 -- 0.000086151 seconds elapsed
 -- 0.000914765 seconds elapsed
 -- 0.000215803 seconds elapsed
 -- 0.000093394 seconds elapsed
 -- 0.000824335 seconds elapsed
 -- 0.000216903 seconds elapsed
 -- 0.000093524 seconds elapsed
 -- 0.000887414 seconds elapsed
 -- 0.000205133 seconds elapsed
 -- 0.000087593 seconds elapsed
 -- 0.00122033 seconds elapsed
 -- 0.000342709 seconds elapsed
 -- 0.00008049 seconds elapsed
 -- 0.0012791 seconds elapsed
 -- 0.000385809 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.